

Low-temperature magnetic properties of porous carbon/sulfur composites under a hydrogen atmosphere

<u>Charles D. Brewster</u>, Lui R. Terry, Sebastian Rochat, Valeska P. Ting

2023 BCI Symposium

04/04/2023

bristol.ac.uk/composites

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Engineering and Physical Sciences Research Council

Context

Why Study Magnetic Properties?

Understanding of the magnetic properties of nanocomposite material is necessary for in demand technologies e.g. spintronics, gas sensing, magneto-optic memory.

Development of New Hydrogen Technologies

Understanding fundamental interactions between hydrogen and materials may lead to new technologies to support the hydrogen energy economy.

Why Sulfur/Carbon Composites?

Carbon/sulfur composite materials often display unusual magnetic properties (ferromagnetism, spinglass, superconductivity etc.) and have shown beneficial properties for hydrogen storage.

Sample Composition

Precursors are sealed in separate compartments of an H-shaped ampule under low pressure and then heated.

ICP-OES provides quantification of the metal content with the sample and shows the presence of residual catalytic metal.

Research Counci

ering and Manufacturing

Results (1) 3

Vacuum Magnetic Results

	Superpart ×10 ⁴ -5	amagentic Su 0.4 0.2 -0.2 -0.4	ubtraction	Ma 1.5 1	gnetis	ation /er	mu.g	-1	MvH supe response from e na	curve s rparam e likely mbedd noparti	shows agneti origina ed cob icles.	a c ating alt		R ad (pc f	esidua Iditiona ossible or the	als fr al dia anti com	rom f amag iferro posi	fitting s gnetisn omagne ite syst	how n and etism em.
C	$\times 10^4$			0.5		Mag	netic	Field /Oe					0.0	Magnetisation /emu.g ⁻¹					
s <mark>c</mark>	-6	-4	-2		2	4	Ļ	6					0.04	4 3					
25				-0.5		_							0.02	2					
				-1	S@SWCNT-12 2 K Langevin I S@SWCNT-12 200 K Langari		12 K unction 1300 K	:	$\times 10^4$			0.0	1		Ma	gnetic	Field /Oe		
	$M(H, 300 \ K) = N \cdot \int_0^\infty \frac{M_{BS} \cdot \pi \cdot D^3 \cdot H}{6 \cdot k_b T} \cdot L(x) \cdot PDF(D) dD$							in Function	_	-6	-4	-2	-0.0	01	2		4	6	
	Parameter	N /g-1	$\widetilde{D_{mag}}$ /n	$m \sigma_{D_{mag}}$	Xdi	a /emu.g ⁻¹	.0e ⁻¹	_					-0.02	2					
	Value	10 ^{14.7}	4.2	±0.3	.3 -3.3×10 ⁻⁷				S@SWCNT-121 300 K S@SWCNCT-121 300 K fit				4	$\chi_{\rm dia} = -3.2675 \text{e-}07 \text{ emu.g}^{-1}.\text{Oe}^{-1}$					

Co

100 mbar H₂ Magnetic Results

Increase in paramagnetic response due to interactions with hydrogen at low temperatures.

Change in magnetic response due to hydrogen strictly limited to cryogenic conditions. At low fields, there is a general diamagnetic subtraction due to the presence of hydrogen.

Cooling whilst in a field provides an enhancement to paramagnetic contributions.

Results (3) 5

Conclusion and Future Work

Conclusion 6

Conclusion

- Magnetic response is heavily dominated by residual ferromagnetic nanoparticles.
- Interactions with hydrogen cause a measurable change of the composite system.
- Phase changes in hydrogen detected by the magnetic response.

Future Work

- Experimentation of different carbon/sulfur samples with fewer ferromagnetic impurities to elucidate the mechanism of hydrogen interactions.
- Conduct Magnetisation measurements with varying hydrogen pressures, temperatures and field strength.

Thank you for listening. Please visit my poster for questions and discussions

c.d.brewster@bristol.ac.uk

bristol.ac.uk/composites

EPSRC Centre for Doctoral Training in Composites Science, Engineering and Manufacturing

Engineering and Physical Sciences Research Council

Special Thanks

Ting Group, ONE Group, BCI Technical Team, Dr Huan Doan, Dr Adam McAleer, Mr Duncan Tarling and Dr Oday Hussein

HENRY ROYCE INSTITUTE

